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ABSTRACT

We evaluated whether "more is ever too much" for the number of indicators (p) per factor (p/f) in CFA by

varying sample size (N, 50-1000) and p/f (2-12 items per factor) in 30,000 Monte Carlo solutions. For all N,

solution behavior steadily improved (more proper solutions, more accurate parameter estimates) with increasing

p/f. There was a compensatory relation between N and p/f: large p/f compensated for small N and large N

compensated for small p/f, but large-N and large-p/f was best. A bias in the behavior of the x2 was also

demonstrated where apparent fit declined with increasing p/f ratios even though all models were "true." Fit was

similar for proper and improper solutions, as were parameter estimates from improper solutions not involving

offending estimates. We also used the 12-p/f data to construct 2, 3, 4, or 6 parcels of items(e.g., two parcels of 6

items per factor, three parcels of 4 items per factor, etc.), but the 12-indicator (nonparceled) solutions were

somewhat better behaved. Our study shows that traditional "rules" implying fewer indicators should be used for

smaller N may be inappropriate and that CFA researchers should use more indicators per factor than is evident

in current practice.
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Is More Ever too Much: The number of indicators per factor in Confirmatory Factor Analysis

In confirmatory factor analysis (CFA) and structural equation modelling (SEM) there is considerable

confusion about the optimal amount of data that is needed to fit a given model. Applied researchers are given

vague and sometimes contradictory guidelines or rules of thumb about how much data is desirable. The number

of data points is the product of the sample size (N) and the number of indicators (p). Whereas there is

considerable disagreement about what minimum N is desirable in CFA studies, there seems to be general

agreement that more is better. In the case of the optimal ratio of number of indicators per factor (p/f), however,

there is considerable disagreement about both the recommended maximum and minimum. A minimum of 3

indicators per factor is typically recommended, based in part on the classic Anderson and Rubin (1956)

demonstration that this is the lower limit for identifiability. However, so long as there are multiple factors and

the factors are not independent, solutions with two indicators per factor are identified and many studies are

based on only two (see discussion by Bollen, 1989). Many rules of thumb imply that researchers should limit

the number of indicators to be considered when N is small (e.g., rules about the minimum ratio of N/p or

N/number of parameter estimates). In factor analysis there is a long history of recommendations about the

minimum N/p ratio that is needed. For example, Nunnally (1967, p. 355) offered the widely cited

recommendation that "a good rule is to have at least ten times as many subjects as variables." However, Tanaka

(1987) argued that the ratio of N to the number of estimated parameters (t) should be more important than ratios

based on the number of measured variables. Consistent with this recommendation, Bollen (1989, p. 268) stated

that "though I know of no hard and fast rule, a useful suggestion is to have at least several cases per free

parameter" and Bentler (1989, p. 6) suggested an "over-simplified guideline" might be that a 5:1 ratio of sample

size to number of free parameters is needed when data are appropriately distributed. Because the number of

variables and the number of estimated parameters tend to be substantially related, all these guidelines imply that

researchers should avoid considering large numbers of indicators or estimated parameters unless N is extremely

large. By implication, this means that researchers should limit p/f, particularly when N is small. In direct

opposition to these implications, classical test theory suggests that it is always better to have more indicators per

factor in that reliability and thus validity tend to increase.

When researchers have a large number of items per factor, a common strategy is to group the items

designed to measure the same factor into 3 or more "parcels" such that each parcel is the mean of several items

and then to conduct analyses on the parcel scores. Thus, for example, if there are 12 items designed to reflect a

particular factor, the researcher may construct three parcels, each consisting of four items. This could be

accomplished by dividing the items into three "parcels" and then computing the mean response to the four

items within each parcel. The use of parcels, although not the major focus of this study, is a possible

compromise between having a large number of items per factor and having a small number of indicators

(parcels) in the actual analysis. This strategy is common in factor analyses of responses to rating scale items

(e.g., personality tests, attitude surveys) and ability/achievement test items where it is common to analyze total

test scores (averaged across a possibly large number of items) from many different tests. Although the use of
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parcels is wide spread, there is surprising little systematic evaluation of its efficacy, particularly in the context

of CFA. A detailed evaluation of this strategy is beyond the scope of the present investigation (but see Cattell,

1978; Comrey, 1970, 1988; Marsh, 1988; Marsh & O'Niell, 1984), but one advantage claimed for this strategy

is that it decreases the number of indicators and estimated parameters relative to N. This advantage, however, is

predicated on the assumption that it is good to have fewer indicators at least when N is small. The results of the

present investigation may inform the appropriateness of this assumption. Also, given a sufficiently large number

of items, it is possible to have very few or very many parcels. Hence, our question "is more ever too much" can

also be directed at the number of parcels. More specifically, given a fixed and sufficiently large number of

measured items, is it better to have 2, 3, 4, or more parcels per factor or is it better to analyze items instead of

parcels?

In a possibly over-simplified form, the typical N/p and N/t guidelines for CFA imply that "more may be

too much" in terms of the number of indicators per factor, whereas classical test theory implies that "more is

never too much." The practical issue addressed here is to establish which of these opposing dictums is more

appropriate and to explore the limits of such generalizations. More specifically, the purpose of our Monte Carlo

simulation study is to determine how systematic variation in p/f and N influence the behavior of CFA solutions

based on a wide range of criteria including likelihood of nonconverged solutions, the occurrence of improper

solutions, interpretability, accuracy of parameter estimates, sampling fluctuations, and goodness of fit. We

begin by briefly summarizing some relevant research in this area.

Tests of Statistical Significance, Convergence, and Proper Solutions

CFA is based on a sample covariance matrix S with elements su based on sample size N and p measured

variables (for more detailed descriptions see Bentler & Bonett, 1980; Bollen, 1989; Joreskog & Sorbom, 1988).

It is hypothesized that the corresponding population correlation matrix E with elements is generated by q

true but unknown parameter estimates that can be expressed as a function of a q x 1 vector 0. Thus ao = f (0)

is a model of the covariance structure where f relates the parameters in 0 to the elements ad . Because E and 0

are unknown, it is necessary to estimate population parameters, resulting in 8E and E E such that a E = f (OE

). The issue of goodness of fit is to determine whether S and EE are sufficiently close to justify the claim that

the model used to generate EE fits the data. A number of different fitting functions can be used to minimize

this difference, but we consider the maximum likelihood function (FMS, ) that is the most widely used function in

CFA studies. Under appropriate conditions, (N-1)FmL, is approximately distributed as the x2 test statistic with

p(p+1)/2-t degrees of freedom, where t is the number of parameters in the model and can be used for evaluating

the statistical significance of the lack of fit. Bollen (1989, pp. 266-269) noted four important assumptions for the

legitimate use of x2 estimate: (1) the variables are multivariate normal; (2) analysis is based on the covariance

matrix rather than the correlation matrix (see also Cudeck, 1989); (3) N has to be sufficiently large; and (4) the model

being tested is true.

In CFA, iterative processes are used to minimize the difference between S and E E in relation to a

particular fitting function. This iterative process continues until the difference between any two steps is smaller

c
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than some pre-determined value, a criterion of convergence. Nonconvergence occurs when the estimation

algorithm is unable to meet the criterion within a specified number of iterations (see Bollen, 1989, p.254;

Joreskog & Sorbom, 1988, p.269). In addition to the characteristics of the model and the data, convergence

could be dependent on the number of iterations allowed, the criterion of convergence, and, possibly, the starting

values used in the first step of the iterative process. In LISREL, for example, the default criterion of

convergence is set at a value that generally provides parameter estimates accurate to three significant digits

whereas the number of iterations is set to three times the number of parameters in the models. Joreskog and

Sorbom suggested that, "Our experience is that, for models which are reasonable for the data, the iterations will

converge before this maximum is reached" (1988, p.182) so that nonconvergence cannot be solved simply by

increasing the number of iterations allowed. Whereas there is some possibility that nonconvergence may

depend on the initial starting values for the iterative process, Boomsma (1985) found nearly identical solutions

using a variety of different starting values and final solutions are rarely reported to vary depending on the starting

values (see Marsh, Byrne & Craven, 1992). Hence, it seems that the problem of nonconvergence is more likely to be a

function of the data or the model rather than the number of iterations or starting values, a conclusion that is consistent with

the position advocated by Velicer and Jackson (1990).

Even when there is convergence, the obtained solution may not be interpretable. Of particular relevance

to the present investigation, the solution may be improper such that one of more of the parameter estimation

matrices is not positive definite (Bentler & Jamshidian, 1994; Wothke, 1993). Thus, for example, a variance or

residual variance estimate may be negative (typically called a Heywood case) or a factor correlation

(standardized factor covariance) may have an absolute value greater than 1.0. van Driel (1978; see also Bollen,

1989; Dillon, Kumar, & Mulani, 1987) recommended that the formal requirement of positive definiteness be

dropped, thus allowing researchers to distinguish between three classifications of improper solution: (1)

boundary cases in which the confidence interval around the offending parameter contains proper values (e.g.,

the confidence interval around a negative uniqueness includes positive values) so that the problem may merely

reflect sampling fluctuations; (2) nonboundary cases in which the confidence interval for the offending

parameter does not contain any proper values; and (3) indefinite cases where the standard error (SE) is so large

that no interpretations are warranted even though the confidence interval may contain proper values (called

large SE solutions in the present investigation). van Driel suggested the existence of boundary cases may not

require rejection of the hypothesis of an interpretable factor structure, but that nonboundary and large SE

solutions may require researchers to delete existing variables, add new variables, or respecify the model.

Boomsma (1985) and Gerbing and Anderson (1987) compared x2 estimates and goodness of fit indices

for fully proper and converged-improper solutions, but found little systematic differences. However, Boomsma

(1985) did find that parameter estimates from solutions containing improper solutions tended to be somewhat

more biased and to have somewhat larger standard errors than those that excluded improper cases. Considering

all aspects of his research, Boomsma concluded that it was still disputable as to whether or not to include

improper solutions in Monte Carlo studies but reiterated that researchers should use Ns of at least 100. Gerbing
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and Anderson added further clarification about the interpretability of improper solutions by categorizing

parameter estimates from improper solutions into three categories: (a) offending parameters (e.g., Heywood

cases and associated factor loadings); (b) offending-related parameters (parameter estimates for measured

variables in the same factor as offending parameters); and (c) non-offending parameters (estimates not involved

with factors having offending parameters). Like Boomsma (1985), they found that parameter estimates in

improper solutions varied from those in proper solutions. Offending uniquenesses were negative and the

corresponding factor loadings were positively biased, whereas offending-related parameter estimates were

biased in the opposite, compensatory direction (e.g., factor loadings were negatively biased). Their important

new finding, however, was that non-offending parameter estimates in impropersolutions did not differ significantly

from parameter estimates in fully proper solutions. Hence, even when the solution is improper, it appears that many of

the parameter estimates are interpretable.

Effects Of Sample Size (N) And Number Of Indicators Per Factor (P/F)

Sample Size.

Much of the relevant literature in this area is summarized by the Gerbing and Anderson (1993) chapter

on Monte Carlo evaluations of goodness of fit. In his classic Monte Carlo study, Boomsma (1982) evaluated the

robustness of CFA solutions for small Ns (25 to 400). He found that the percentage of proper solutions,

accuracy of parameter estimates, sampling variability in parameter estimates, and the appropriateness of the x2

test statistic were all favorably influenced by having larger Ns. Based on this research, Boomsma offered his

widely cited recommendation that N should be at least 100, but also noted that Ns of 200 or more may be

desirable in some circumstances. For each level of N, solutions were better behaved for p/f = 4 than for p/f = 2

when the saturation of measured variables (the relation between a measured variable and its latent factor, the

factor loading) was larger. The main finding that larger Ns were associated with better behaved solutions has

been replicated in many subsequent studies (e.g., Anderson & Gerbing, 1984; Boomsma, 1985; Gerbing &

Anderson, 1987; 1993; also see Guadagnoli & Velicer, 1988).

Velicer and Fava (1987, 1994) argued that concerns about the minimum N for factor analysis have

produced many guidelines but limited empirical research. They briefly reviewed recommendations based on an

absolute minimum N (e.g., 100 or 200) and ratios of N/p ranging from 2 to 20, but noted that the most familiar

advice was to have as large an N as possible. They concluded that there was no support for rules positing a

minimum N as a function of p. In fact, the Guadagnoli and Velicer (1988) principal component study found that

for a fixed N better results were obtained if p/f was larger, not smaller. Velicer and Fava found that

convergence to proper solutions and goodness of fit were favorably influenced by increasing N, p/f, and

saturation (factor loadings), and that these results were similar for principal component analysis, image

component analysis, and maximum likelihood factor analysis. One purpose of the present investigation is to

replicate and extent these results in terms of N and p/f for CFA.

Marsh and Bailey (1991) evaluated the behavior of a set of models designed to fit "real" and simulated

multitrait-multimethod (MTMM) data. In a typical MTMM model, T x M measured variables are used to infer
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T correlated trait factors and M correlated method factors. Unlike most Monte Carlo studies in which each

measured variable reflects only one latent construct, in MTMM studies each measured variable is posited to

reflect one trait factor and one method factor. Across 435 MTMM matrices, this model converged to a proper

solution only 24% of the time. The likelihood of convergence to proper solutions increased as N and p

increased. However, even when MTMM data was simulated from this MTMM model, most of the solutions

were improper when N and p were small (e.g., N = 160 or 400 and p = 9, a 3Tx3M design). Proper solutions

were much more likely when N and particularly p were large (e.g., p= 36 in a 6T x 6M design, or p = 28 in a 7T

x 4M design). The authors noted that their results contradicted rules of thumb about N/p, and also called into

question the generalizability of claims that three indicators per factor are sufficient to produce stable, well-

defined structures. (Note that the number of indicators per factor is somewhat ambiguous in MTMM studies

where each measured variable loads on two factors. For example, in a 3T x 3M design, each latent factor is

inferred from three indicators but a total of 6 factors are inferred from only 9 measured variables.) Whereas

MTMM data is not the focus of the present investigation, this research demonstrates that the generalizability of

simple rules of thumb may be limited.

In summary, the only recommendation about N that has received consistent support is the claim that

more is better. In particular, there appear to be no generalizable guidelines about the minimum N needed to

achieve a stable, well-defined solution. Rules positing minimum ratios of N to p or t seem to be violated by

Velicer and Fava. (1987, 1994; also see Guadagnoli & Velicer, 1988) factor analysis studies and the Marsh and

Bailey (1991) CFA study of MTMM data. In the present investigation, we test the generalizability of these results in a

CFA study in which an "independent clusters" model (i.e., each measured variable loads on one and only one factor)

serves as both the generating model used to create the simulated data and the approximating model used to fit the

simulated data.

Number Of items Per Factor

A few studies have systematically evaluated the effects of p/f in conjunction with other variables, and

reasonably systematic effects have been found. Thus, for example, Anderson and Gerbing (1984), Boomsma

(1982), Boomsma (1985), Ding, Velicer, and Harlow, (in press; also see Ding, 1993) and Gerbing and

Anderson (1987) reported that the likelihood of fully proper solutions increased with increasing p/f, N, and

saturation. Similar results were reported in Monte Carlo studies involving principal components and factor

analysis (Velicer & Fava, 1987). Gerbing and Anderson (1987) also demonstrated that the standard errors of

parameter estimates were smaller when N and p/f were larger.

Anderson and Gerbing (1984), Boomsma (1982), Bearden, Sharma and Teel (1982), Ding et al. (1994;

also see Ding , 1993), and Gerbing and Anderson (1987) also reported, however, that goodness of fit tended to

be negatively related to increasing p. In an early Monte Carlo study of 2- and 4-factor models (both having 3

items per factor), Bearden et al. (1982) reported that the x2 test behaved appropriately for two-factor models,

but that for four-factor models with small N the test statistic led to too many rejections of the null hypothesis.

These results suggest that p may be critical, although p/f ratios were not manipulated independently of p.
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Anderson and Gerbing (1984, p.167) reported mean p-values for the x2 test of .536, .461, and .416 (with SEs for

the mean of less than .01 due to the large number of replicates in their study) for p/f = 2, 3, and 4 respectively.

All pair-wise differences were significant, the value for p/f = 2 was significantly higher than the expected value

of ..5 (i.e., a bias in the direction of too few rejections), and the values for p/f = 3 and 4 were significantly

smaller than expected. This effect was larger for small N and was attenuated for large N. Boomsma (1982, p.

168) also reported x2 s to be slightly larger than expected for p/f=3 and particularly p/f=4 when N was small

and factor loadings were moderate or large. A similar pattern was also reported by Ding et at (in press; also see

Ding, 1993). They found that the probability of rejecting true models (at p < .05) was close to 5% for p/f =2 but

rose steadily as p/f ratios increased. This effect varied with N so that for p /f6, rejection rates were 39% for

N=50, 22% for N=100, 12% for N=200, and 6% for N=400. The size of this effect was more dramatic in the

Ding et al study than previous research because they considered a wider range of p/f ratios (2 to 6 indicators per

factor) than the other studies summarized here. Because all approximating models in each of these studies were

true models, these results suggest a systematic bias in the x2 that varies as a function of p/f.

Methodology Overview

The present investigation consists of three Monte Carlo simulation studies using a largely parallel

methodology and overlapping data. All analyses for the present investigation were conducted with the PC

version of LISREL 8 (Joreskog & Sorbom, 1993) and version 6 of SPSS for Windows (SPSS, 1993). Three-

factor congeneric models (see Figure 1) were constructed in which each indicator loaded on one and only one

factor (see Marsh, Balla & McDonald, 1988; Marsh & Balla, 1994). Five levels of p/f were considered in which

all factors for a given generating model had 2, 3 (as shown in Figure 1), 4, 6, or 12 items per factor. All factors

had unit variance and were correlated .30 with each other. Each indicator also had unit variance and had factor

loadings and uniqueness of .60 and .64 respectively. Five levels of N (number of cases per replicate) were 50,.

100, 200, 400, and 1000. For purposes of this study, the simulated data were generated using the random

generator function NORMAL in SPSS. In order to evaluate the effects of N, these cases were divided into 2500

replicates of N=50 cases, 1000 replicates of N=100, 500 replicates of N=200, 250 replicates of N=400, and 100

replicates of N=1000. We specifically generated more replicates for smaller N because the behavior of the small

N solutions is a primary focus of this investigation and these solutions tend to be less stable.

Insert Figure 1 about here

For all LISREL analyses in the present investigation: the factor variances were fixed at unity; factor

correlations, factor loadings, and uniqueness were all freely estimated; the maximum number of iterations was

set to 500; LISREL's default starting values were used; and the default check on the admissibility of the

solution was turned off. All models tested in this study are "true" in that the pattern of free and fixed parameters

was the same in the generating model used to generate the simulated data and the approximating model used to

fit the dala. Hence, to the extent that the x2 test is behaving appropriately, the mean x2 /df ratio should not

differ systematically from 1.0 and the mean p-value associated with the x2 should not differ significantly from

.50. (Because the df associated with different models varies substantially, the x2 should differ substantially from

9
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model to model and so it is less useful for present purposes). Because the purpose of the present investigation

was not to evaluate different fit indices per se, we do not present results for a variety of subjective indices of fit

(e.g., Marsh et al., 1988; McDonald & Marsh, 1990), but we briefly summarize these findings in relation to the

X2 /df results.

Study 1: Nonconverged and Improper Solutions

Study 1 focuses on the likelihood that solutions are fully proper, improper, or nonconverged. Consistent

with previous research, preliminary analyses demonstrated that nonconverged and improper solutions are more

likely when N and p/f were small. Because of the focus of study 1, we evaluated data that produced many

improper solutions (N=50 and p/f = 2, 3, or 4) by comparing goodness of fit and parameter estimates from fully

proper solutions with those from various classifications of improper solutions.

For purposes of comparison, the solutions were divided into six categories following the classification

by van Driel (1978): proper, boundary, non-boundary, large SE proper, large SE improper, and nonconverged.

The boundary and nonboundary cases consisted of solutions with offending parameters (i.e., negative

uniqueness or factor correlations greater than 1.0 in absolute value). The boundary and non-boundary cases

differed in that offending parameters of the former were within 2 standard errors (estimated from fully proper

solutions) of the permissible region boundaries (0 for uniquenesses and ± 1 for correlations). Large SE

solutions were operationally defined as all solutions having at least one estimated SE that was larger than the

corresponding mean SE of the fully proper solution by at least 5 SEs. These large SE solutions were further

divided into large SE-proper and large SE-improper, depending on whether there were any offending parameter

estimates in addition to the large SE. Thus, large SE-proper solutions had at least one excessively large SE but

no negative uniquenesses and no factor correlations greater than 1 in absolute value. Nonconverged solutions

were operationally defined as the failure to converge to the default LISREL criterion of convergence within 500

iterations.

Following Gerbing and Anderson (1987), the factor loadings, uniquenesses, and factor correlations

were classified as proper, offending, offending-related, and non-offending. Proper parameter estimates were all

those in fully proper solutions. Offending parameters referred to negative uniquenesses (and the corresponding

factor loading), factor correlations greater than 1 in absolute value, and parameter estimates with excessively

large SEs. Offending-related parameters were factor loadings, uniquenesses, or factor correlations associated

with a factor with an offending parameter estimate. Non-offending parameter estimates were all remaining

parameter estimates in an improper solution. Thus, for example, if the uniqueness for the first indicator of factor

1 was negative (or had an excessively large SE), then factor loadings and uniquenesses for that indicator were

classified as "offending" estimates; all factor loadings and uniquenesses for other indicators of factor 1 and all

factor correlations involving factor 1 were classified as "offending-related" estimates; and all factor loadings

and uniqueness for indicators not loading on factor 1 and factor correlations not involving factor 1 were

classified as "non-offending" estimates.

IL
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In summary, Study 1 examines the effects of p/f on the behavior of CFA solutions, following from and

extending the earlier research (Gerbing & Anderson, 1987; Dillon, et al, 1987; van Driel, 1978; Velicer & Fava,

1987, 1994). In particular, we examine various classifications of improper solutions and make separate

comparisons of offending, offending-related, and non-offending parameter estimates. More importantly, we

bring together these two themes by comparing different types of parameter estimates in the various

classifications of improper solutions.

Results: Nonconverged and Improper Solutions (Study 1)

Convergence To Proper Solutions. The effects of N and p/f ratios on the convergence are examined

first (Table 1, ignoring the results for parcels for now). The likelihood of fully proper solutions is substantially

related to larger Ns and larger p/f. Thus, for example, only 13.6% of the solutions based on N=50 and p/f = 2

are proper (56.6% of the solutions were nonconverged), whereas solutions based on N=50 and p/f=12 or

N=1000 and p/f=2 both converged to proper solutions most of the time (100% & 93% respectively). These

results suggest a compensatory effect of N and p/f on the behavior of solutions. For p/f = 2, it is important to

have very large Ns -- at least N=400 and preferably more for data considered here -- in order to be reasonably

confident in obtaining a fully proper solution. When p/f = 3 (the minimum typically recommended), the results

are consistent with Boomsma's widely cited recommendations in that N=100 may be sufficient but that N=200

is preferable. However, when p/f = 6 or 12, N=50 is sufficient. These results support a "more is better"

conclusion for both N and p /f. Whereas Boomsma's (1982) recommendation of a minimum N=100 seems

reasonable when p/f = 3 or 4, it does not generalize to solutions where p/f is smaller (p/f = 2) or larger (p/f= 6,

or 12). Likewise, whereas it may be undesirable to have p/f = 2, this situation is less unacceptable when N is

sufficiently large. Finally, the results offer a strong refutation of guidelines focusing on minimum ratios of N to

p or t. At any given N in Table 1 the likelihood of convergence to a propersolution improves with increasing

p/f.

Insert Table 1 about here

Parameter Estimates. Parameter estimates from fully proper, nonconverged, and improper solutions

(Tables 2 and 3) are based on the 2,500 replicates for cells with N=50 and p/f = 2, 3, or 4 where the occurrence

of improper and nonconverged solutions is frequent. All models considered in the present investigation have at

least 2 indicators for each of the three factors and so a total of six factor loadings and six uniquenesses are

considered for each solution (Table 2). Hence the total number of factor loadings (and uniquenesses) for each

of the three cells considered here is 15,000 (6 estimates x 2500 replicates). Similarly, because all models have

three correlations, the number of correlations summarized in each cell is 7,500 (3 estimates x 2,500 replicates).

The classification of the solution type -- proper, nonconverged, etc. -- was, of course, based on the entire set of

parameter estimates from each solution.

Insert Table 2 about here

The critical comparisons in Table 2 are those between parameter estimates from fully proper solutions

and those from the various categories of improper solutions. For all three cells of the design, non-offending
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parameter estimates from improper solutions are reasonably similar to the corresponding parameter estimates

from fully proper solutions. For p/f = 2, the nonconverged/nonoffending factor loadings are substantially lower

and more variable than the fully proper estimates, but otherwise even the nonoffending parameter estimates in

the nonconverged cases are reasonable. Particularly when there are at least three items per factor, all

nonoffending parameter estimates from nonconverged and different types of improper solutions were similar to

those based on the fully proper solutions.

There is also a clear and consistent pattern for the offending and offending-related estimates of factor

loadings and uniquenesses. For all cells the offending uniquenesses are consistently much too small, whereas

the corresponding factor loadings are much too large. Whereas these results for the offending parameter

estimates are not surprising, it is important to emphasize that for large SE solutions that were otherwise proper,

the offending parameter estimates (i.e, otherwise proper estimates with large SEs) are also systematically

biased. Somewhat more surprising, though still consistent with results reported by Gerbing and Anderson

(1987), is the pattern of offending-related factor loadings and uniquenesses. In all cells the offending-related

uniquenesses are substantially larger than in the fully proper solutions, whereas the offending-related factor

loadings are substantially smaller. There is not such a clear pattern of results for factor correlations. Whereas

non-offending factor correlations appear to be reasonably similar to those based on fully proper solutions, other

factor correlations from improper solutions are not.

Goodness of Fit. The means and SDs for the goodness of fit indices are shown in Table 3. Group

means were compared with oneway ANOVA followed by post-hoc Scheffe tests (SPSS, 1993). Despite the

large number of cases (2500 replicates), the goodness of fit statistics for the fully proper solutions do not differ

significantly from any classification of (converged) improper solutions in analyses summarized in Table 3(also

see boxplots in Figure 2). In fact, except for the solutions based on two indicators per factor, even the goodness

of fit statistics for the nonconverged solutions are reasonably similar to those from the fully proper solutions.

Also, the standard deviations for the fully proper solutions are reasonably similar to those for the different

categories of improper solutions and, except for the two-indicator cell, even the nonconverged solutions.

Insert Figure 2 and Table 3 about here

Although not the major emphasis of this study, it is disconcerting to note that the mean values for all the

fit indices differ systematically with p/f. Consider, for example, the x2 /df ratio (Figure 2) that is expected to be

1.0 for all cells (since only true models are considered here). For fully proper and all categories of improper

solutions, the x2 /df ratio is systematically smaller than 1.0 for two-indicator solutions, slightly larger than 1.0

for three-indicator solutions, and substantially larger than 1.0 for the four-indicator solutions. A naive

interpretation of these results might suggest that the goodness of fit is somehow better when there are fewer

indicators. However, because all the solutions are based on true models, it appears that these results reflect a

breakdown in the asymptotic behavior of the x2 statistic. Because this issue is even more evident in Study 2

where there is a wider range of p/f and N, we revisit the implications of this finding in our overview discussion

of the two studies.
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Study 2: Effects of Number of Indicators and N in Confirmatory Factor Analysis

In study 2 we considered only the fully proper solutions from the 25 cells of our design representing the

five levels of p/f (2, 3, 4, 6, and 12) and five levels of N (50, 100, 200, 400, and 1000). As in Study 1, fully

proper solutions were operationally defined as converged solutions with no negative uniquenesses, no factor

correlations greater than ± 1.0, and reasonable SEs for parameter estimates. The focus of this study was on the

parameter estimates, the variability of parameter estimates, goodness of fit, and factor reliability across the 25

cells in the design. In order to summarize our results, we conducted two-way ANOVAs, but because of the very

large number of replicates our primary consideration was on effect sizes instead of nominal tests of statistical

significance. Effect sizes presented are eta (the square root of the ratio of SSexpiainediSStotai for each effect) and r

(the linear effect of log N, the linear effect of log of p/f, and the linear x linear component of the N x p/f interaction).

Results: Effects of Number of Indicators and N in Confirmatory Factor Analysis (Study 2)

Parameter Estimates. The means and SDs of the factor loadings, uniquenesses, factor correlations,

and factor reliabilities are presented in Table 4 (ignoring parcel results for now) and the effect sizes are

summarized in Table 5 (also see box plots in figure 3). Mean parameter estimates for all cells are reasonably

consistent although estimates from two-indicator solutions -- particularly those with smaller Ns appear to differ

systematically from population values. However, a two-way ANOVA of these results (Table 5) indicated that

the combined effects of p/f, N, and their interaction accounted for only 0.1%, 0.5%, and 1.4% of the variance in

factor loadings, uniquenesses, and factor correlations respectively. In contrast to the mean parameter estimates,

the mean factor reliability estimates increase steadily with increasing p/f.

The SDs for all parameter and reliability estimates decrease substantially with increases in N and p/f

(see Table 4). In order to more systematically evaluate these effects, we computed absolute difference scores

for the first two factor loadings on factor 1, the first two uniquenesses for factor 1, and the first two factor

correlations and related these to N, p/f, and their interaction. For these analyses, substantial portions of the

variance were explained by these effects; 12.9%, 14.7%, and 14.3% of the variance in factor loadings,

uniquenesses, and factor correlations respectively. Although the effects of N and p/f are large, their interaction

explained less than 1% of the variance in each set of estimates (Table 5).

Insert Tables 4 and 5 and Figure 3 about here

Goodness of Fit. The means and SDs of the goodness of fit indices are presented in Table 4 and the

corresponding two-way ANOVAs are summarised in Table 5 (also see boxplots in Figure 4). Because the linear

effects are typically only marginally smaller than the corresponding etas, most of the explained variance can be

accounted for by the (log) linear effects. Goodness of fit appears to decline as p/f increases and this effect is

larger when N is small. Although a smaller and less systematic trend, goodness of fit appears to become poorer

with increasing N when p/f is small and to improve with N when p/f is large. The fit indices most closely

approximate their expected values (for a true model) when N =1000. As noted previously, these apparent

differences in fit are illusory in that only true models are considered. Hence, these effects apparently reflect the

breakdown in the asymptotic properties of the x2 statistic.
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Study 3: A Comparison of Parcel and Item Solutions

The purpose of Study 3 is to explore the use of parcels in relation to our broader question of whether

more is better. In Study 3 we extended consideration to parcels by constructing 2, 3, 4, and 6 parcels from the 12

items in the p/f = 12 data considered earlier. Thus, the 12 items per factor were divided into two parcels (of six

items), three parcels (of 4 items), four parcels (of 3 items), and six parcels (of 2 items). In each case, the simple

mean of the responses to the items in each parcel was used to represent the parcel score. Hence, each latent

construct reflected all 12 items, but the actual number of parcels used in the CFA varied.

All analyses were conducted in the covariance metric. This is particularly important because the

expected variance of each parcel score, depending on the number of items in the parcel, is substantially less

than the variability of the item scores (1.0 in the population in the present investigation) used to construct the

parcel by virtue of the central limit theorem. This feature of the parcels also complicates comparisons between

item and parcel solutions. In addressing this issue it would be possible to compare 2-item solutions with 2-

parcel solutions, 3-item solutions with 3-parcel solutions, etc. However, such comparisons are of limited value

because they confound effects of the number of indicators (items or parcels), the number of items, and

therelative saturation of each indicator. It is more relevant to compare the results based on the various parcel

solutions with each other and with the 12-item solution, because an applied researcher with a fixed number of

items per factor must decide whether to analyze items or parcels.

Results: A Comparison of Parcel and Item Solutions (Study 3)

Proper and Improper Solutions. Solutions based on 2, 3, 4 or 6 parcels are more likely to be fully

proper than solutions based on 2, 3, 4, or 6 items (Table 1). Nevertheless, the trends are similar in that the

likelihood of a proper solution increases systematically with N and the number of indicators (items or parcels).

However, the advantage of parcels is primarily evident for the 3- and 4-indicator solutions. Although these

results appear to favor parcel solutions, it is important to reiterate that all the parcel solutions were based on

responses to 12 items and that the 12-item solutions resulted in 100% fully proper solutions for all N. When the

number of parcels is small and N is small to moderate, parcel solutions are more likely to result in improper

solutions than the 12-item solution. Hence, at least in terms of obtaining fully proper solutions for the data

considered here, there are some potential disadvantages in using parcels instead of the individual items to

construct the parcels. These results are consistent with earlier results suggesting that the use of more indicators

is better.

Parameter Estimates and Goodness of Fit. Parameter estimates for fully proper parcel solutions are

presented in Table 4 along with the item solutions considered earlier (also see effect sizes in Table 5). These

comparisons, however, are substantially influenced by the change in metric. Whereas the population variance

of each item is 1.0, the population variance of parcel scores decreases systematically with increases in the

number of items included in each parcel (consistent with the central limit theorem). Mean factor loadings and

correlations are almost unaffected by N or p/f. The large effect of the number of parcels on the uniquenesses

reflects in part the metric of the parcels. For analyses done in the (untransformed) covariance metric, the factor

I7
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loadings remain constant whereas the uniquenesses (error variance) decrease as the number of items in each

parcel increase. Note, however, that the reliability of each factor is nearly unaffected because all parcel

solutions and the 12-item solutions are all based on responses to the same 12 items. It is also interesting to note

that if the analyses had been conducted in a correlational metric (or, equivalently, reported in terms of

completely standardized estimates) the size of factor loadings would systematically increase as the number of

parcels decreased (and the number of items used to construct each parcel increased). However, this merely

reflects the scaling of the parameter estimates and does not fundamentally affect the interpretation of results

presented here.

The parameter estimate SDs all decline with increasing N as observed for the item solutions (see Tables

4 and 5). The effect of the number of parcels on the parameter estimate SDs, however, is complicated by the

change in metric of the analyses. Because each parcel reflects the average of several independent measures, the

variability of the factor loadings and uniquenesses vary inversely with the number of items in the parcel. This

added precision associated with parcels based on larger numbers of items, however, is offset by the fact that the

number of estimates is smaller. Thus, for example, the factor loadings for the 12-item solutions are much less

precise than the factor loadings based on 2 parcels, but there are many more independent estimates of the factor

in the 12-item solution than the 2-parcel solution. Reflecting this trade-off between the precision of estimation

and the number of estimates, the SDs of the correlations are nearly independent of the number of parcels. That

is, because all latent constructs are inferred from responses to all 12 original items no matter how many parcels

are included in the analysis, inferences about the latent constructs are similar for item and parcel solutions. This

pattern is also consistent with the finding that the mean reliability is similar across all cells for the parcel

solutions. The SDs of the reliability estimates, however, do decline systematically with increasing N and p /f.

The goodness of fit of parcel solutions (Table 4) for any given Ns appear to become poorer as the

numbers of parcels increase, but this pattern reflects the bias in the x2 observed earlier. Again, the size of this

apparent bias systematically decreases with increasing N, suggesting that the rate at which the x2 approaches its

asymptotic behavior varies with the number of parcels.

Summary and Implications

Number of Items

Our major focus has been on the question "is more ever too much" in relation to the number of

indicators per factor in CFA studies. In answer to this question, the present investigation provides clear support

for the advantages of using more indicators per factor: fewer nonconverged solutions, fewer improper solutions,

greater interpretability (even when solutions are improper), more accurate and stable parameter estimates, and

more reliable factors. This use of more indicators per factor is particularly important when N is small to

moderate. Recommendations that N should be at least 100 are widely cited, but N=100 was not sufficient when

p/f was only 2 or even 3 in the present investigation. With N=100, researchers should have at least four items

per factor based on the model used here and more is better. Furthermore, Ns smaller than 100 may suffice if p/f

is sufficiently large although more is better. In the present investigation, for example, solutions with N=50
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always converged to fully proper when there were 12 items per factor. Within the limitations of this study it

appears that it is better to have more indicators per factor so that more is never too much.

We do not expect that the actual values obtained in this research to generalize to other CFA models.

Thus, for example, there is some evidence that the minimum desirable N and p/f may also depend on the

saturation of the indicators (eg., Ding, et al., in press; Velicer & Fava, 1987, 1994). Support for this conclusion

is also evident in Study 3 where the use of parcels effectively increased the relative saturation of the parcel

indicators and parcel solutions were somewhat more likely to result in fully proper solLitions than corresponding

item solutions (e.g., 3-parcel/factor solutions vs. 3-item/factor solutions). Also, in the present investigation we

only considered simple population generating models (each indicator loaded on one and only one factor) and

true approximating models. As demonstrated in the Marsh and Bailey (1991) study of real and simulated

MTMM data, the situation becomes more complicated when indicators load on more than one factor and real

data are considered. Whereas further research is needed to clarify how many indicators per factor are needed in

a much wider set of circumstances than considered here, we predict that our "more is better" conclusionwill have

broad generalizability.

In simulation studies it is easy to generate ever increasing numbers of high quality indicators, but in

practice this may not be the case. Particularly in exploratory studies, researchers may not even know the quality

of the finite number of items available. In this situation it is even more important to include a large number of

items so that there will be a sufficient number of good items even if some items are subsequently discarded. In

the context of factor analysis, for example, Velicer and Fava (1994) suggested that 6-10 items per factor is a

good initial target, based on the assumption that 25-50% of the initial items will have to be deleted, but

recommend that 20-30 items are needed when the quality of items is poor or N is small. Although these

recommendations are more extreme than conditions considered in the present investigation, they are consistent with

our claim that more is better.

Nonconverged and Improper Solutions

In the present investigation we extended and combined a classification of solutions (fully proper,

boundary, non-boundary, large SE improper, large SE proper, nonconverged) adapted from van Driel (1978)

and a classification of parameter estimates (proper, nonoffending, offending related, and offending) adapted

from Gerbing and Anderson (1987). The fit of fully proper solutions did not differ substantially from values

found in any of the classifications of improper solution considered here. Except for the solutions with p/f = 2,

not even the fit of the nonconverged solutions was appreciably poorer than the fit of the fully proper solutions.

These results are consistent with previous research (e.g., Boomsma, 1985; Gerbing & Anderson, 1987),

although these studies did not specifically evaluate the fit of nonconverged solutions. These findings suggest

that it may be reasonable for researchers to evaluate the goodness of fit of improper and, perhaps, even

nonconverged solutions. Thus, even when one model within a nested sequence of models does not result in a

fully proper solution, it may be useful to evaluate how the fit of this improper solution compares with other fully

proper solutions. For example, in evaluating the partially nested taxonomy of MTMM models (Marsh, 1989),
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the most general model typically does not produce fully proper solutions. However, Marsh suggested that it

may still be reasonable to compare the goodness of fit of this general model with more restrictive models in the

taxonomy that do converge to fully proper solutions. Particularly if the two models are nested, then this

comparison may support the conclusion that the added complexity in the more complex model is unnecessary or

unwarranted. This strategy may be particularly useful when the researcher posits an a priori set of fully or

partially nested models instead of relying on the evaluation of a single model.

In our study, non-offending parameter estimates from improper solutions did not differ substantially

from parameter estimates in fully proper solutions. This pattern of results was reasonably consistent across the

different classifications of improper solution and, except for p/f=2, even the nonconverged solutions. In

contrast, the offending and offending-related estimates differed systematically from those in proper solutions.

Hence, it may be reasonable for researchers to interpret non-offending parameters even when the overall

solution is improper.

For present purposes, we classified solutions having any parameter estimates with excessively large SEs

as improper even when the solution was not otherwise improper (i.e., there were no out-of-range parameter

estimates). Whereas this strategy clearly follows from van Driel's (1978) theoretical work, it does not seem to

be incorporated into typical practice. However, the results of the present investigation showed that offending

(i.e., those with large SEs) and offending-related parameter estimates in this classification were systematically

biased. Marsh et al. (1992) reanalyzed previously published data and showed that substantive interpretations

based on a "large SE proper" solution (with multiple parameters with large SEs) were unwarranted for those

data. More specifically, they demonstrated that even though the results of separate group analyses for two

groups appeared to differ substantially, there was good support for the factorial invariance of solutions across

the two groups. They argued that even though the separate group solutions appeared to be very different, the

large SE solution was so unstable that the conclusion was unwarranted. When invariance constraints were

imposed, the common group solution differed substantially from the original solution for the large SE group, but

was very similar to the solution from the stable group. Their results suggest that the solution for the large SE

group was so unstable that a wide variety of solutions with possibly very different interpretations were not

distinguishable in terms of goodness of fit. Consistent with the implications of the present investigation that

large-SE-proper solutions should be classified as improper and treated with appropriate caution, the authors

recommended that a systematic evaluation of the size of SEs should be incorporated into the evaluation of CFA

models.

Goodness of Fit

The original intent of the study was to focus on goodness of fit only as one basis for comparing proper

and improper solutions. However, the finding that the apparent fit of true models varied systematically with p/f

required further attention. In particular, a superficial -- and erroneous -- interpretation of these findings would

argue that researchers should design studies with only two orthree indicators per factor -- a suggestion that runs

counter to our recommendations that more indicators are better. The fallacy of this interpretation is obvious in
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the present investigation because all the approximating models are known to be true. Hence, this apparent

decline in fit associated with larger p/f must reflect problems in the standards used to evaluate fit rather than

misspecification in the approximating model. In practice, however, researchers would have no way of knowing

that the seemingly poorer fit associated with larger p/f actually reflected a bias in the x2 statistic. It also follows

that this systematic bias in the x2 must also affect the behavior on the wide variety of subjective indices of fit

that can be expressed as a function of x2. Although not presented as part of this study, we found similar effects

of p/f, N, and their interaction on the non-normed fit index, the relative noncentrality index, noncentrality, and

other subjective indices evaluated in our previous research (e.g., Marsh & Balla, 1994; Marsh et al., 1988;

McDonald & Marsh, 1990). Whereas this pattern of results in not of central interest to the present investigation,

it apparently has important implications for the typical interpretation of goodness of fit. Because of the

importance placed on evaluating the fit of one model against a fixed standard (e.g., the obtained x2 being less

than its critical value, or incremental fit indices being greater than .90) this bias would naturally extinguish the

otherwise desirable strategy of using larger numbers of indicators. This may explain in part why so many

published CFA studies are based on p/f = 2 or 3.

Our research is not the only Monte Carlo CFA study in this area to find a systematic relation between

the apparent fit of true models and p/f that varies with N (see earlier summaries of Anderson & Gerbing, 1984;

Boomsma, 1982; Bearden et al., 1982; Ding, 1993; Ding, et al., in press; Gerbing & Anderson , 1987;. Velicer

& Fava, 1987). However, this finding seems not to have been emphasized in previous research and appears not

to have influenced typical practice in CFA research. Commenting on this trend in their earlier research that was

"not discussed or explained," Gerbing and Anderson (1993, p. 150) noted that the fit of true models declined as

the "number of factors in the model, or the number of indicators per factor, increased." They suggested that the

explanation may be related to parsimony in that models with fewer indicators have fewer df, "leaving more

`room to maneuver' the parameter estimates so as to minimize the fit function" (p. 50). Alternatively, it may

suffice to simply conclude that the speed with which the x2 test statistic approaches its asymptotic behavior

with increasing N is slower when there are more indicators. Whereas an explanation for this breakdown in the

asymptotic behavior the x2 test statistic as a function of the number of indicators clearly warrants further

research, the implications of this finding are particularly important in the present investigation. Due to this

apparent bias in the x2 test statistic and goodness of indices that are a function of x2, a superficial interpretation

of fit statistics would suggest that using fewer indicators is better even though other characteristics considered

here (e.g., convergence to proper solutions, interpretability, accuracy and sampling variation in parameter

estimates, factor reliability) argue that using more indicators is better.

One anonymous reviewer offered a radical summary of this problem. The reviewer emphasized

emphatically that the problems associated with the x2 test statistic have long been recognized (e.g., Zwick &

Velicer, 1986) but have been largely ignored in structural modeling practice, leading this reviewer to conclude

that: "There are two obvious requirements here: (a) The chi-square test statistic should be deleted from all

software programs, and (b) Goodness of fit indices that are not a function of the chi-square statistic need to be

c& I
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developed." Although this concern was not the major focus of the present investigation and the scope of the

design is not sufficiently broad to warrant such extreme conclusions, the results reported here are not

inconsistent with these recommendations and are consistent with results noted in other research.

This apparent bias in the interpretation of the traditional x2 test statistic provides a dilemma for the

applied researcher: It may be possible to devise adjusted test statistics or the use of alternative distributions to

more appropriately calibrate p-values. Whereas researchers have developed more robust test statistics such as

the Satorra-Bentler robust x2 test statistic in EQS (Bentler, 1989; Chou & Bentler, 1995), these alternative test

statistics have focused on problems associated with non-normal data that may not be very helpful in the present

situation (since all data considered here are from normally distributed populations). An alternative approach

might be to use bootstrapping techniques where repeated samples with replacement drawn from the original

sample are used to estimate an empirical sampling distribution (Bollen & Stine, 1992). Although the bootstrap

estimates of the chi-square distribution presented by Bollen and Stine are encouraging, bootstrapping has not

been studied sufficiently in CFA research to recommend its routine application. Until more appropriate test

statistics are developed, however, a more expedient alternative might be to place more emphasis on

comparisons of the relative fit of multiple competing models of the same data particularly a priori sets of

nested or partially nested models (e.g., models developed to test MTMM data). This emphasis on relative fit

substantially reduces the reliance on possibly inappropriate indicators of the absolute fit of any one model.

Although the resolution of how to compensate for apparent biases in the traditional x2 test statistic is clearly

beyond the scope of the present investigation, it is an important area for further research

Parcels .

We also explored the efficacy of using parcels constructed from the 12 items per factor instead of the 12

items as the starting point for CFAs. Solutions based on 2, 3, 4, or 6 parcels performed somewhat better than the

corresponding solution based on 2, 3, 4, or 6 items, although trends observed in the item solutions were also

evident in the parcel solutions. The more relevant comparison, however, was between solutions based on

parcels constructed from the 12 items and the 12 -item solutions. The 12-item solutions performed better than

the parcel solutions in some cells in that they were more likely to converge to fully proper solutions. However,

these differences were only evident when N or the number of parcels was small. The comparison of parameter

estimates in the item and parcel solutions was complicated by the change in metric of parcel and item solutions.

However, the equivalence of the factor reliability estimates across the parcel and 12-item solutions suggested

that there were no particular advantages in using parcels. Consistent with this finding, the size and variability of

correlations among the factors did not differ in the parcel and 12-item solutions. Particularly in studies where

the substantive emphasis is on the structural aspect of the solution involving relations among the latent

constructs, results based on parcels and items seem to be equivalent so long as the number of parcels is

reasonable (i.e., at least 3) and the solutions are fully proper.

These results suggest that the number of indicators used to infer a latent construct is more important

than whether latent constructs are inferred with items or parcels. In relation to our question of whether or not it

0My
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is better to parcel, it seems that it does not make much difference so long as the number of parcels and N is

adequate. However, if the N is small or the number of items is not sufficient to construct at least 3 or 4 parcels

per factor, then it may be better to conduct analyses at the item level. There are, of course, many other

considerations that may impact on the efficacy of parcels (e.g., the use of items with categorical, non-normal

response distributions) that are beyond the scope of the present investigation. Thus, for example, scores based

on parcels are more likely to be normally distributed than scores based on individual items so that this might be

a potential advantage of using parcels instead of items. Also, parcels may be used to "hide" wittingly or

unwittingly unique covariance associated with idiosyncratic characteristics of the items (e.g., the use of

positively and negatively worded items), although the desirability of this practice requires further consideration.

In the present investigation, however, results based on the parcel solutions provide additional support for our

"more is better" conclusion. Having more items to begin with is better whether analyses are done at the item or

parcel level, item solutions are somewhat better behaved than parcel solutions, and solutions based on more

parcels are somewhat better behaved than solutions based on fewer parcels. As emphasized by an anonymous

reviewer, one practical recommendation is that if a researcher obtains an improper solution using parcels, then

the use of more parcels per factor or conducting analyses at the item level may resolve the problem.

There may, however, appear to be other advantages in analyzing parcel scores instead of item scores

that may be more illusory than real. For purposes of ease of interpretation, researchers often present fully

standardized parameter estimates instead of unstandardized estimates. In this case, factor loadings based on

parcel scores will be systematically higher than those based on item scores -- substantially so if parcels are

based on many items. Larger factor loadings are typically interpreted to mean that the psychometric properties

of the underlying measurement instrument are better. However, because both the parcel and item solutions are

based on the same set of items, this typical interpretation of the difference in factor loading is inappropriate.

The apparent bias in the traditional x2 test statistic reported here and elsewhere results in a more subtle illusory

advantage of parcel solutions. This is clear in the present investigation because both the parcel and item

solutions are based on "true" models. However, even in this ideal situation, the extent of the illusory advantage

varies with other characteristics such as N and the juxtaposition between the number of items and parcels. In

applied settings with real data, the situation is likely to be even more complicated. Because the illusoriness of

these apparent advantages of parcel analyses are not widely recognized and not easily identified in applied

research, the preference for the use of parcels is likely to continue. However, because our results suggest that

there may be few disadvantages in using parcel scores instead of item scores, the implications of this potential

bias in favor of parcels may not be too serious. As emphasized earlier, there is a clear need for further research

comparing the advantages and disadvantages under a much wider set of conditions than considered here.

Two-indicator Solutions.

Applied researchers are typically recommended to use p/f 3 (e.g., Bollen, 1989), but many applied

studies use p/f =2. Whereas our results generally support the typical recommendation, the pattern of results is

somewhat more complicated than anticipated. In some respects the disadvantages of using only two indicators

0.2,3
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are mitigated by a very large N. However, there were additional problems for solutions with p/f = 2, some of

which are not well documented in the literature. It is well known that solutions with p/f=2 are not identified

when the latent factors are uncorrelated and are likely to be very unstable when the population correlations are

small (Anderson & Rubin, 1956; Bollen, 1989). Because of sampling fluctuations, associated problems with

empirical estimation are likely to be exacerbated when N is small. For this reason, two-indicator solutions

should be avoided. This well-known feature of two-indicator solutions also points to a potentially important

limitation in our study in which factor correlations were fixed at a relatively low value of .3. Many more

problems would have been likely if smaller factor correlations had been specified -- particularly if factor

correlations approached zero -- whereas even fewer problems would have been likely if larger factor

correlations had been specified.

The results of the present investigation also suggest other concerns with two-indicator solutions that are

not so well known. Summaries of goodness of fit may be misleading in that x2 test and associated p-values are

positively biased (i.e., apparent fit is better than it should be; Tables 3 and 6). At least in the present

investigation, parameter estimates are also somewhat biased in relation to known population values in that

observed factor loadings are too large, uniquenesses are too small, and factor correlations are too large (Table

4). Also, factor reliability estimates tend to be too large. These more subtle problems are not necessarily

inconsistent with results of previous research (e.g., Bearden et al., 1982; Gerbing & Anderson, 1987), but they

seem not to have been emphasized. These conclusions about p/f =2 clearly warrant further consideration to test

the obvious limitations in the generalizability of our study (e.g., all factor correlations were .3) , but the pattern

of results supports the recommendation that researchers should not consider p/f = 2.

Limitations and Directions For Further Research

Specific recommendations about the minimum appropriate N and p/f and the use of parcels or items

based on the present investigation are necessarily idiosyncratic to this particular study. It is unlikely that these

particular values will generalize to other conditions and we have already suggested some variables that may

influence these results (e.g., size of factor loadings and factor correlations, degree of misspecification,

complexity of factor structures). However, we predict that there will be continued support for our "more is

better" conclusion in terms of both N and number of indicators.

Our study considered a much wider variety of p/fs than is typically considered, but it is useful to

speculate about potential limitations to our claim that more is better. It might seem logical, for example, that

there is some limit on the number of variables that can be reasonably fit when N is small. One possibly critical

barrier is where the number of estimated parameters exceeds N (t > N). LISREL (Joreskog & Sorbom, 1993)

provides users with an explicit warning that results should be interpreted cautiously when this occurs. In our

study, this possibly critical barrier was only crossed for solutions based on p/f=12 (number of estimated

parameters = 75) for N=50. However, results summarized here and more detailed inspections of these solutions

suggested no dire consequences. These solutions seemed better behaved than p/f = 6 solutions (with 39

estimated parameters) that did not cross this barrier and there were no apparent discontinuities in the trends
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observed across all five p/f ratios based on N=50 and N=100. In order to further explore this conclusion, we

conducted supplemental simulations for p/f=12 for Ns between 70 and 80 (i.e., Ns slightly above and slightly

below the barrier). Again we found no discontinuities in the pattern of results (convergence to proper solutions,

fit statistics, and parameter estimates). Although further research is clearly warranted, these supplemental

analyses suggest that there may be nothing special about crossing the n=t barrier despite LISREL's dire

warning! These supplemental results also support the generality of our conclusions that more is better.

An even more extreme barrier is where N=p. In the present investigation we did not cross this barrier in

that the most extreme case we considered was N=50 and p=36. In order to explore this barrier we simulated

additional data for p/f=12 (i.e., p = 36) and N=25. For these solutions LISREL appropriately warned us that the

input matrix was not positive definite and invoked a default "ridge" option (Joreskog & Sorbom, 1993). In this

ridge estimation a constant (.001 by default) multiplied by the diagonal of S is added to S in order to create a

positive-definite S as required for maximum likelihood method of estimation. Again we found that the solutions

behaved as expected in comparison to solutions with larger Ns. Most ( 99%) solutions converged to a proper

solution and the mean parameter estimates approximated the population values. Although the standard errors of

estimates were large (about .2), they were only marginally larger than those based on N=50 and p/f=12.

Whereas the p-values for the x2 test statistic were noticeably poorer, this apparently represented problems in the

asymptotic behavior of the x2 discussed earlier. We then simulated data for N=25 for p/f = 2, 3, 4, and 6.

Again we found that for a fixed N (N=25), the behavior of the solutions steadily improved with increasing p/f.

Our surprising success at N=25 prompted us to push the limits of generalizability even further by examining

solutions at N=10 for p/f = 12. Here we did find that the behavior of the solutions deteriorated dramatically in

that 20% of the solutions failed to converge at all and only 5% of the solutions were fully proper. However,

when we also explored further simulations with N=10 and with p/f = 2, 3, 4, and 6 we found that the

performance was even poorer. Hence, not even these analyses based on a completely unrealistic N=10 seemed

to be inconsistent with our claim that more indicators is better, and the claim was apparently supported by our

supplemental analyses with N=25. It should be emphasized that we do not recommend using such small N and

only pursued these analyses to tests the limits of our conclusions. However, if a situation dictates that

researchers use unacceptably small Ns -- say 50 or less -- it is better to have a large number of indicators per

factor.

Given that we began this study with an apparently counter-intuitive proposal, the results of this

investigation and our supplemental analyses provided surprising good support for our conclusion that more is

better. Within the obvious limitations of this study, we showed that for a fixed N solutions with more indicators

per factor (up to p/f=12) performed better than solutions with smaller p/fs. Furthermore, the advantages of

having more indicators were greater when N was small. The solutions were very well behaved if either p/f was

large and N was at least moderate or N was large and p/f was at least moderate. In order to avoid any possible

misinterpretation, we emphasize again that CFAs should be conducted with large Ns. CFAs based on N<100 or

even N<200 should be avoided and our general recommendation is that more is never too much. It would be
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inappropriate to cite our study as a justification for using small N. However, if circumstances dictate that N

must be small despite our warnings, then it is better to have a large number of indicators per factor. Large p/f

can compensate to some extent for small Ns and vice-versa. Whereas the development of a more rigorous

mathematical basis for explaining this observation is beyond the scope of the present investigation, our results

suggest that this may be a reasonable direction for further research. The results of the present investigation do,

however, have a very clear take-home message to the applied researcher that is not evident in typical practice:

use more indicators per factor because more is never too much.

26
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Figure Captions
Figure 1. An example of one population target model (p/f = 3) used to generate the simulated data.

Figure 2. Box-plots for Goodness of Fit as a function of the number of indicators per factor and the

convergence behavior: x2/df ratio and p-value associated with the x2 test of statistical significance.

Figure 3. Box-plots for parameter estimates for fully proper solutions as a function of the number of indicators

per factor and sample size: factor loadings and factor correlations.

Figure 4. Box-plots for Goodness of Fit as a function of the number of indicators per factor and sample size:

x2/df ratio and p-value associated with the x2 test of statistical significance.
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Table 1

Percentages of Different Convergence Behaviour by Sample Size and Number ofIndicators/Pan:els per Factor

Item Solutions

Number of Indicators Samples Size

Parcel Solutions

Sample Size

Solution Type 50 100 200 400 1000 50 100 200 400 1000

2 Proper 13.6 32.8 55.6 82.4 93.0 15.6 35.3 69.0 92.0 99.0

Boundary 2.8 2.2 1.0 30.7 34.0 19.6 5.2

Non-Boundary .1 2.7 1.1

SE large proper 3.3 6.0 8.6 8.8 7.0 .4 1.4 1.6 1.6 1.0

SE large improper 23.8 25.8 22.2 6.4 37.7 26.0 9.6 1.2

Nonconvergent 56.6 33.1 12.6 2.4 13.0 2.2 .2

3 Proper 54.8 85.4 97.8 100.0 99.0 97.9 100.0 100.0 100.0 100.0

Boundary 2.0 .2 1.7

Non-Boundary .1 .1

SE large proper 12.0 10.7 2.2 1.0 .2

SE large improper 20.4 2.8 .2

Nonconvergent 10.8 .9

4 Proper 86.5 99.1 99.6 100.0 100.0 99.8 100.0 100.0 100.0 100.0

Boundary 1.2 .1 2

SE large proper 5.5 .7 .4 .1

SE large improper 4:7 .1

Nonconvergent 2.2

6 Proper 99.6 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0

SE large proper .2 .1

SE large improper .2

Nonconvergent .1

12 Proper 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Note. Percentages are based on 2500 replicates of N=50, 1000 replicates of N=100 cases, 500 replicates of
N=200, 250 replicates of N=400, and 100 replicates of N=1000. Each solution was classified as fully proper or

as falling into one the categories of improper solution. For purposes of Study 3 only, the 12 items/factor in the
12 item solution were used to construct parcels (e.g., the 12 items were divided into three parcels of four items

each and solutions based on these three indicators were evaluated).
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Table 3

Goodness of Fit For Proper and Improper Solutions: Tests of statistical significance Conducted Separately For Each Solution Type.

No. of Indicators

Solution Type N

Chi/df p-value

Mean SD Mean SD

2 Indicators/Factor

Proper 339 .788a .421 .605a .258

Boundary 69 .801a .457 .601a .273

SE large proper 83 .724a .393 .644a .255

SE large improper 594 .754a .443 .630a .266

Nonconvergent 1415 1.075b .903 .486b .282

F(4,2495) = 27.31*** 38.25***

3 Indicators/Factor

Proper 1369 1.038a .300 .466a .291

Boundary 51 1.072ab .315 .438ab .293

SE large proper 299 1.006a .306 .497a .297

SE large improper 509 1.092ab .301 .411ab .285

Nonconvergent 271 1.165b .327 .351b .273

F(4,2495) = 13.68*** 12.18***

4 Indicators/Factor

Proper 2163 1.109a .224 .360a .281

Boundary 29 1.179a .233 .279a .268

SE large proper 137 1.129a .239 .344a .289

SE large improper 117 1.146a .220 .307a .263

Nonconvergent 54 1.202a .208 .237a .223

F(4,2495) = 3.68** 4.04**

Note. There was only one improper solution falling into the non-boundary classification, and so

this classification is not presented. A aneway ANOVA was conducted separately for each index,

followed by a post-hoc test of pairwise comparisons. Means not statistically different from one

another (p < .05) are indicated by the same superscript.

<.05, **-a < .01, ***Ja < .001.
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Table 5
Effects of Sample Size and Number of Indicators/Parcels on Parameter Estimates. Factor Reliability and
Goodness of Fit Indexes

Item Solutions Parcel Solutions

Number of Sample N Indicator Number of Sample N Indicator

Indicator Size X Size Indicator Size X Size

E r E r E r E r E r E r

Parameter Estimates
Factor Loading .02 -.01 .01 -.01 .02 .01 .01 -.00 .01 .01 .01 .00

Uniqueness .04 .03 .05 .05 .02 -.01 .66 .64 .01 .01 .01 .01

Factor Correlation .06 -.04 .06 -.06 .08 .06 .05 -.03 .04 -.03 .07 .04

Parameter Variability
Factor Loading .20 -.17 .29 -.29 .07 .02 .11 .08 .30 -.29 .11 -.10

Uniqueness .23 -.19 .30 -.30 .06 .03 .18 .11 .28 -.28 .15 -.13

Factor Correlation .12 -.11 .35 -.34 .08 .07 .00 .00 .32 -.32 .01 -.00

Factor Reliability .64 .64 .02 -.02 .04 .03 .03 .00 .00 .00 .00 .00

Goodness of Fit Indexes
Chi/df .20 .19 .16 -.13 .25 -.22 .16 .15 .18 -.17 .21 -.17

p value .27 -.27 .14 .14 .18 .16 .25 -.25 .17 .17 .16 .13

Note. For each estimate a 5 (levels of N) X 5 (levels of p/FN) was conducted.

Effect size for each main and interaction effect is summarized by eta [E;
, 112

(SSeffect/SStotal) ] and the linear effect (r) of log N, log p/N, and their
interaction. Values are based only on fully proper solutions (see Table 1).
Results for the parcel solutions are considered in Study 3.
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